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Single drop impact onto liquid films is simulated numerically. Surface tension and
gravity are taken into account, whereas viscosity and compressibility are neglected.
This permits recourse to a boundary-integral method, based on an integral equation
for a scalar velocity potential. Calculations are performed for normal impacts resulting
in axisymmetric flows.

For times that are small compared to the characteristic time of impact 2R/w0 (R
being the drop radius, w0 its initial velocity towards the liquid film), it is found that a
disk-like jet forms at the neck between the drop and the pre-existing liquid film, if the
impact Weber number is high enough. This jet can pinch off a torus-shaped liquid
volume at its tip or reconnect with the pre-existing liquid film, thus entraining a torus-
shaped bubble. In reality, both the torus-shaped bubble and liquid torus will decay
according to Rayleigh’s capillary instability, thus breaking the cylindrical symmetry.
This mechanism of bubble entrainment differs from those described in literature.

For times that are comparable to or larger than the characteristic time of impact,
capillary waves on the film, or the well-known crowns, are obtained again according
to whether the impact Weber number is low or high enough.

1. Introduction
Drop impact onto solid and liquid surfaces is of widespread practical importance; it

is related, for example, to ink-jet printing, soil erosion by rain, spray cooling, anneal-
ing, quenching and painting, shock atomization, combustion engines, meteorology,
underwater noise of rain, etc. It has been investigated for more than a hundred years
now. Worthington (1876, 1877, 1908) is generally considered as the first to investigate
it systematically from a scientific point of view. Since then much work has been done;
it was reviewed some years ago by Prosperetti & Og̃uz (1993) and Rein (1993).

The various articles published so far concentrate on different impact conditions.
These conditions can be high or low speed, deep or shallow liquids or hot or cold
solids as targets, and so on.

It has been well known that according to these conditions, qualitatively different
behaviours and phenomena can occur: the drops can spread over the solid surface
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Germany.
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after impact (e.g. Chandra & Avedisian 1991; Fukai et al. 1993, 1995; Gao & Sonin
1994; Hatta, Fujimoto & Takuda 1995; Pasandideh-Fard et al. 1996; Schiaffino &
Sonin 1997a, b; Waldvogel & Poulikakos 1997 – in several of these cases cooling and
solidification of the spreading droplets are of primary importance); they can splash
by creating a crown (e.g. Levin & Hobbs 1971; Yarin & Weiss 1995); a so-called
Worthington jet or a vortex-ring can be formed (e.g. Shin & McMahon 1990; Dooley
et al. 1997); droplet rebound and bouncing is possible (e.g. Foote 1975; Pasandideh-
Fard et al. 1996; Hatta et al. 1997; Mao, Kuhn & Tran 1997), and so on. In several
cases, one or more bubbles can be entrained by the drop impact. Pumphrey & Elmore
(1990) compared four different mechanisms and scenarios of bubble entrainment. The
so-called regular and irregular entrainment as well as large-bubble entrainment can
occur only in the case of deep liquids. The Mesler entrainment resulting in a number of
tiny bubbles (Esmailizadeh & Mesler 1986) was observed for the drop impact on deep
liquids at low velocities only. For impact on shallow liquids, especially with relatively
high velocities, we are not aware of any description of bubble entrainment in literature.

The crucial aspect of these phenomena is that a number of different hydrodynamic
events takes place after the impact itself, i.e. during the spreading process of the liquid
lamella (see Stow & Hadfield 1981; Yarin & Weiss 1995). Among these are surface
waves on the lamella and formation of a crown.

In this work, we report on a numerical treatment of the drop impact onto films
of finite thickness of the same liquid. The flow is considered to be a potential one,
so the problem can be tackled by a boundary-integral method. For infinitely deep
liquids as targets, a similar problem was treated by Og̃uz & Prosperetti (1990).
We compare our results with the predictions provided by means of a quasi-one-
dimensional model developed in Yarin & Weiss (1995). Finally, we compare our
results also with theoretical and experimental evidence available in literature.

In § 2 we formulate the problem and describe the initial conditions as well as the
numerical technique and its implementation. The results are presented in § 3, where
they are also discussed and compared with existing models and experiments. Section
4 contains concluding remarks.

2. Formulation of the problem and numerical implementation
Consider a spherical drop impinging perpendicularly onto a plane solid surface

covered by a thin film. The drop consists of the same liquid as the film. The gravity
field is supposed to act in the direction of the impact.

The phenomena to be considered here are highly transient. The timescales are not
large enough for shear wave propagation across the liquid film on the wall, or across
the free jet-like structures resulting from the impact. Detailed estimates will be given
in § 3 in the discussion of the results. Thus we will prove a posteriori that viscous
effects can be neglected (see also Og̃uz & Prosperetti 1990; Yarin & Weiss 1995).

Furthermore, in the cases under consideration the fluid can be taken as incom-
pressible. Compressibility effects are of importance only at the very first moments
of impact, when the radius of the contact area of the drop rcontact is of the order of
rcontact . rc ≈ w0R/c0 i.e. up to times after impact of the order of tc ≈ Rw0/(2c

2
0)

(where R and w0 denote the radius and velocity of the impacting drop, c0 the velocity
of sound in the liquid; see Bowden & Field 1964; Rein 1993; Yarin & Weiss 1995).
For R ≈ 1 mm, w0 ≈ 1 m s−1 and c0 ∼ 103 m s−1 we obtain rc ∼ 1 µm and tc ∼ 0.5 ns,
which already shows that compressibility effects are very short compared with the
timescales typical of the impact, R/w0, and even with 10−4 × R/w0. In addition, the
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Figure 1. Drop impact onto a thin liquid film.

volume compressed by the shock wave at the time tc after impact can be estimated by
πr2

c c0tc ≈ π/2 R3(w0/c0)
3 = 3

8
(w0/c0)

3Vdrop, with Vdrop being the volume of the imping-

ing drop. This shows that, if w0/c0 = O(10−3)� 1, compressibility affects a very small
volume fraction of the impinging drop, i.e. that its effects can be neglected; indeed,
compressibility effects have not been found experimentally at w0/c0 = O(10−3).

The above estimates show that the impact Mach number w0/c0 is the crucial param-
eter for quantifying compressibility effects. Field, Dear & Ogren (1989) experimentally
observed compressibility effects for a very high impact velocity w0 = 110 m s−1, which
yields Mach numbers of the order of O(10−1).

It is emphasized that even a small contact area of rc ∼ 1 µm contains about
πr2

c/πa
2 ≈ 108 molecules (a is a molecular size of the order of 10−10 m). The latter

permits recourse to classical fluid mechanics even at this early stage (Lesser 1981;
Lesser & Field 1983; Rein 1993). Also, the later incompressible stages of the impact
process – with scales even larger than tc, with which we are dealing in the present
work – are obviously within the scope of classical fluid mechanics.

According to the estimates mentioned, the velocity field u is irrotational. It contains
neither sources nor sinks and thus can be represented by a scalar potential Φ as per

u = gradΦ(x), (2.1)

∆Φ = 0, (2.2)

for the interior of the fluid domain.
The normal fluid velocity vanishes at the impermeable wall, thus the boundary

condition there is

∂Φ/∂n = 0 at the solid wall, (2.3)

where n denotes the outer unit normal vector of the fluid domain.
The non-steady Bernoulli integral at the free surface of the fluid domain reads

ρ∂Φ/∂t+ 1
2
ρ (gradΦ)2 + ρgz + p = 0, (2.4)

where ρ denotes the fluid density, g acceleration due to gravity (in the −z-direction,
cf. figure 1), and p the pressure.
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Assuming cylindrical symmetry of the whole process, we have only to consider the
radial and axial coordinates, x and z, respectively, with x restricted to positive values.
The solid wall is at z = 0.

From (2.1) and (2.4) we conclude that the boundary conditions at the free surface
describing the evolution of its shape and the potential, read

Dx/Dt = ∂Φ/∂x, (2.5a)

Dz/Dt = ∂Φ/∂z, (2.5b)

DΦ/Dt = 1
2
{(∂Φ/∂x)2 + (∂Φ/∂z)2} − gz − p/ρ, (2.5c)

where D/Dt = ∂/∂t + u · grad stands for the material time derivative. In particular,
the condition (2.5c) permits updating the values of the potential at every fluid element
at the free surface.

The derivatives ∂Φ/∂x and ∂Φ/∂z at the free surface are expressed in terms of
the tangential and normal derivatives ∂Φ/∂s and ∂Φ/∂n by means of an orthogonal
transformation:

∂Φ/∂x = −∂z/∂s ∂Φ/∂n+ ∂x/∂s ∂Φ/∂s, (2.6a)

∂Φ/∂z = ∂x/∂s ∂Φ/∂n+ ∂z/∂s ∂Φ/∂s, (2.6b)

where s denotes the arclength measured from an arbitrary origin. For convenience,
the origin of s is located on the axis of symmetry, namely at the apex of the impinging
drop. Here, s is used as a parameter for the shape of the free surface.

Only the capillary component pcap due to surface tension contributes to the pressure
at the free surface in (2.4) and (2.5c):

p = pcap = ακ, (2.7)

α being the surface tension and κ the mean curvature of the free surface. Expressing
the curvature in terms of x(s) and z(s), we have

p = −α
(
∂2z

∂s2
∂x

∂s
− ∂2x

∂s2
∂z

∂s
+

1

x

∂z

∂s

)
if x 6= 0. (2.8)

The last term on the right-hand side has to be replaced by its limit at the symmetry
axis:

p = −α
(
∂2z

∂s2
∂x

∂s
− ∂2x

∂s2
∂z

∂s
+
∂2z

∂s2

)
if x = 0. (2.9)

Here, we use the fact that ∂x/∂s = 1 at x = 0, i.e. that the surface at the apex is
smooth.

In our treatment, we render lengths dimensionless by the radius of the impinging
drop R, velocities by (gR)1/2, times by (R/g)1/2, and the velocity potential by (gR3)1/2.
The boundary conditions at the free surface become, according to (2.5)–(2.8),

Dx/Dt = −∂z/∂s ∂Φ/∂n+ ∂x/∂s ∂Φ/∂s, (2.10a)

Dz/Dt = ∂x/∂s ∂Φ/∂n+ ∂z/∂s ∂Φ/∂s, (2.10b)

DΦ/Dt = 1
2
{(∂Φ/∂s)2 + (∂Φ/∂n)2} − z

+S
(
∂2z/∂s2 ∂x/∂s− ∂2x/∂s2 ∂z/∂s+ 1/x ∂z/∂s

)
, (2.10c)

the dimensionless group,

S = Bo−1 = α/(ρgR2), (2.11)

being the inverse Bond number.
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Note that besides S , with the six dimensional parameters involved in the problem
(w0, R, g, h, α and ρ) we have two additional independent dimensionless groups, namely

H = h/R, W = w0(gR)−1/2. (2.12)

Another set of three independent dimensionless groups would be

Fr = w0(gh)
−1/2 = W H−1/2 (Froude number), (2.13a)

H = h/R, (2.13b)

We = 2Rρw2
0/α = 2W 2S−1 (Weber number). (2.13c)

With the choice (2.11) and (2.12), the evolution equations involve only one dimen-
sionless group, namely S , whereas with the choice (2.13) all three groups Fr,H , and
We would be involved, since S = 2F r H We−1.

We want to simulate numerically the evolution of the free surface itself (i.e. its x-
and z-coordinates) as well as that of the potential Φ at the free surface according
to the set of equations (2.10). Our method is based on an approach related to that
introduced first by Longuet-Higgins & Cokelet (1976), Blake, Taib & Doherty (1986,
1987), and Og̃uz & Prosperetti (1989).

If Φ is known on the surface of the fluid domain, ∂Φ/∂s is obtained directly by
tangential differentiation. To calculate the normal derivative ∂Φ/∂n of Φ, which is
also involved in the evolution equations (2.10), use is made of the fact that Φ is a
harmonic function. Thus ∂Φ/∂n may be found from the integral counterpart of the
Laplace equation:

Φ(x) =

∫
{G(x, x′) ∂Φ/∂n′ (x′)− Φ(x′) ∂G/∂n′ (x, x′)}dA′, (2.14)

with x on the boundary of the fluid domain. The integration covers the whole surface
of this domain, including the wall. The vector x′ stands for any point on it, including
x′ = x; dA′ denotes the surface element at x′, n′ the outer unit normal vector at x′
and G Green’s function. The method of images is used to account for a plane rigid
wall.

The integral equation (2.14) still contains an integral over the free surface; in
the problem considered, integration in the azimuthal direction with respect to the
symmetry axis can be carried out, leading to

Φ(x) =

∫
{Geff(x, x′) ∂Φ/∂n′(x′)− Φ(x′) ∂Geff/∂n′(x, x′)}ds′, (2.15)

Geff being the known effective Green function.
As we mentioned before, the fluid domain considered in (2.14) is bounded at the

bottom by the solid wall and at the top by the free surface. Owing to the choice of
Green’s function in the method of images, there is no need to place nodes on the
rigid surface. On the side, the fluid domain considered in (2.14) and (2.15) is bounded
by a virtual cylindrical wall set across the liquid film at a distance l from the axis of
impact. Treatment of the sidewall needs nodes – as well as, of course, the description
of the free surface. The method with the virtual sidewall permits treatment of films
of thickness comparable to, or even large with respect to, the drop radius – without
a significant increase in the CPU-time needed.

Details of the numerical implementation of the boundary-integral equation (2.15)
can be found in Weiss (1997). In previous works, treating free-surface flows with
strong stretching and surface-tension effects, zigzag instability was encountered when
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the boundary integral equation was employed (e.g. Longuet-Higgins & Cokelet 1976;
Og̃uz & Prosperetti 1990), and suppressed by numerical smoothing or by inclusion of
artificial viscous terms. The numerical method of the present work permits calculations
completely devoid of zigzag instability, even though no numerical smoothing or
artificial viscous terms are used.

On the free surface, we work typically with 100 or 167 nodes, a reasonable
compromise between accuracy and computation time consumption. We concluded
this from comparison with the results obtained with 50 and 400 nodes. The virtual
sidewall was typically at l = 7 in the calculations for the initial moments after impact,
and at l = 28 in those for large times after impact. The number of nodes at the
sidewall was taken between 2 and 12, depending on H .

At the moment of impact, the contact area between the drop and the film is a point,
which inevitably creates serious problems in any numerical calculation. To avoid them,
a segment of height R(1 − β) is cut from the oncoming drop. The remainder of the
drop is assumed to hit the film directly, having thus an initial contact area of finite
size. For the method to make sense, one has to require 0 < 1 − β � 1. In the
calculations we used β = 0.87, 0.90, 0.95, 0.99 (standard), and 0.999. The effect of β
is considered in the next section where the results of the calculations are discussed.
Here, we mention only that the effect was minor.

The neck at the intersection between the sphere and the pre-existing liquid film is
then smoothed out to avoid singularities in the capillary pressure. This is done by
fitting a circle tangent to the sphere and the pre-existing liquid film. Its dimensionless
radius r′ is taken proportional to (1− β), typically 2

3
(1− β).

To determine the values of the potential, we bear in mind that the drop is to fall
with a uniform velocity onto a quiescent film. Thus, at the moment of impact the
potential is Φ = 0 in the film, i.e. at 0 6 z 6 h, whereas it is Φ = −W (z − h) in the
drop, i.e. at z > h. Such a distribution of the potential has a discontinuity in ∂Φ/∂z
and thus does not satisfy the Laplace equation. As was mentioned above, smoothing
of the discontinuity and development of a finite contact area is related to compressible
flow at the drop bottom. The velocity distribution generated by this flow still cannot
be described by a harmonic function. Thus, at the moment when incompressible flow
sets in (which we refer to as t = 0) the potential distribution over the free surface does
not satisfy the Laplace equation. Only its asymptotic branches in the still unperturbed
main parts of the drop and film are harmonic. Any non-harmonic function smoothly
connecting these asymptotics may be used to generate the initial condition for Φ
at the free surface, provided the compressible stage is not considered in detail. It is
emphasized, however, that, at any moment t > 0, this initial distribution generates a
harmonic potential in the whole fluid domain, since the Laplace equation is solved,
which is precisely the way the potential flow develops in reality.

In the numerical implementation it should be checked whether a specific smoothing
function has any effect on the results. Accordingly, we tested three such functions
(exhibiting, of course, the same asymptotic behaviour in the unperturbed parts of the
drop and film). In the first of these, at the neck between the drop and the film we chose
a quadratic behaviour with respect to z, and on the sphere a linear behaviour (with
a view to a uniform impact velocity), shifted by some amount to ensure continuity of
the potential at the connection with the neck. This results in

Φ(x, z; t = 0) =

 0 for z 6 h,
−W (z − h)2/[2(z0 − h)] for h 6 z 6 z0,
−W (z − h/2− z0/2) for z > z0,

(2.16)
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where z0 is the z-coordinate of the connection between the neck and the sphere. For
test purposes this distribution was compared with

Φtanh(x, z; t = 0) = −W (z − h) tanh [(z − h)/(z0 − h)] (for z > h), (2.17)

and with

Φarctan(x, z; t = 0) = −(2/π)W (z − h) arctan [(z − h)/(z0 − h)] (for z > h). (2.18)

The differences were negligible and immaterial to the conclusions of this article,
including neck distortion, jetting, tiny-bubble entrainment, and crown formation
discussed in the next section. We also checked that the effect of β related to the initial
configuration of the contact area is rather small (again, details in the next section).
Similar tests were made by Og̃uz & Prosperetti (1990) with a similar outcome.

3. Results, interpretation and discussion
As posed above, all the resuts in this section were obtained for axisymmetric flow,

using cylindrical geometry. Accordingly, the radial coordinate x was restricted to
positive values, but, for clarity, the plots are presented in a form containing symmetric
negative values. The plots are to be understood as cross-sections containing the axis
of symmetry. The x is then the coordinate in this cross-section perpendicular to the
axis. In any case, all the results are symmetric with respect to the axis at x = 0.

In all the plots of this section showing the shape of the free surface, z − H = 0
indicates the unperturbed film level. The solid wall corresponds to z = 0, i.e. z−H =
−H .

We consider an example from the series for the initial moments after impact with
W = 10, S = 1 and H = 0.25, corresponding to an ethanol drop of R = 1.7 mm
hitting an ethanol film of h = 430 µm with w0 = 1.3 m s−1. We plot initial shape of
the drop in figure 2. According to the initial condition (2.16) for the case shown in
that figure we find that the horizontal velocity component Dx/Dt is small (below 5%,
of the order of 1% of the impact speed W ) except near the neck, where it reaches
values up to about double the speed of impact. For the vertical velocity Dz/Dt we
observe that the value on the sphere fluctuates by about 1% around its desired value
of −10. Similarly, the values at the film surface far from the neck (where e.g. x > 1)
are less than about 0.1% of the speed of impact. In the neck region itself, however,
we observe changes of Dz/Dt over a relatively large distance of a few tenths of the
drop radius. Furthermore, the vertical velocity in the film region close to the neck is
positive, indicating that fluid elements move upward there, away from the solid wall.
In the same manner, the vertical velocity on the sphere close to the neck is larger
than the impact speed, indicating that the fluid elements move faster towards the wall
than the rest of the drop. The initial velocity distribution found by means of (2.16)
plausibly represents the velocity field expected for the moment of impact of a drop
moving against the z-axis at the velocity of W = 10.

3.1. The initial moments after impact

Let us consider in detail the behaviour of the neck. To this end, we resolve the small
circle of radius r′ by typically 10 nodes. For the set of parameters used in figure 2 we
observe the formation of a jet-like structure in cross-section (see figure 3), which prop-
agates into the free space between the impinging drop and the pre-existing liquid film.

In drop impact onto a liquid film at the wall, the velocity normal to the wall
changes over the neck region from that of the impinging drop w0, to zero at the
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Figure 2. The initial surface shape for the case W = 10, S = 1, and H = 0.25. Thus, We = 200.

z −H = 0 denotes the unperturbed film level, z = 0, i.e. z −H = −H , is the solid wall.
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Figure 3. Evolution of the free surface in the case of W = 10, S = 1, and H = 0.25. Thus, We = 200.
The different curves correspond from left to right to times 0, 1× 10−4, 2× 10−4, 3× 10−4, 4× 10−4,
5 × 10−4, and 5.4 × 10−4. The symmetry axis is at x = 0. We observe the formation of a jet-like
structure in the cross-section, propagating into the free space between the impinging drop and the
pre-existing liquid film. The structure reconnects with the film at about t ≈ 5.4 × 10−4 after the
impact, thereby trapping a torus-shaped volume of the surrounding gas.

impermeable wall. An almost step-like jump in velocity in an incompressible liquid
with a free surface, when faster liquid particles push the slower ones (such as in
the neck region in the present case), inevitably results in a liquid sheet outflowing
normally to the free surface, if the velocity jump is large enough to allow the inertial
forces to overcome the surface tension (Yarin & Weiss 1995). This fact is general
and independent of any specific shape of the liquid domain, resulting, for example,
in crown formation after a strong impact on a liquid layer (Levin & Hobbs 1971;
Yarin & Weiss 1995; Cossali, Coghe & Marengo 1997). It also results in splashing
bells on free liquid jets of relatively large radius with strong pulsations in the axial
velocity imposed, for example, by a piston (see figure 7c in Meier, Klöpper & Grabitz
1992). For the same reason, jetting was encountered in the neck below a solid body
entering an incompressible fluid (see figure 6 in Howison, Ockendon & Wilson 1991).
Therefore, we conclude that the jetting corresponding to the relatively strong impact
with W = 10 and S = 1 depicted in figure 3 is expected, and sets in inevitably,
irrespective of any approximations involved in the initial smoothing of the neck zone.
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In the example considered in figure 3, the jet reconnects with the film at about
t ≈ 5.4 × 10−4 (which corresponds with the parameters used above to 7µ s) after
the impact, thereby trapping a torus-shaped volume of the surrounding gas. It is
clear that, at this stage, the simulation breaks down. This stems, first, from the
topological change which takes place in the liquid volume, with the domain of the
liquid considered forming holes, and its surface no longer connected; secondly, the
tangential velocities at the sides of the reconnection section differ, in general, from
each other, therefore a vorticity sheet is formed, which a priori can no longer be
described by a scalar velocity potential only.

It is emphasized that the jetting depicted in figure 3 has nothing in common
with the sideways jetting from the droplet bottom related to the formation of an
expansion wave during the very early compressible stage of the impact (Lesser &
Field 1983; Rein 1993). The former occurs in the middle of the neck region owing to
the dominating inertial forces without any compressibility effects involved, and results
in a free radial jet. By contrast, the latter sets in owing to the compressibility effects
at the drop bottom, and results in a wall jet leading to formation of the contact area
considered as an initial condition in the present work. Moreover, the experimental
data of Field et al. (1989) show that jets resulting from the compressibility effects are
actually not coherent. They are composed of a spray of secondary droplets which
represent ‘spalls’ from the surface of the primary one. Also, in this case, the jetting
velocity actually corresponds to the speed of propagation of the spallation front and
thus is of the order of 103 m s−1, whereas liquid particles move at a much lower speed,
of the order of 102 m s−1 (Field et al. 1989).

The results shown in figure 3 allow us to estimate a posteriori the magnitude of
the viscous effects. The latter could affect the flow via propagation of the shear wave
from the wall or from the free surface (see e.g. Lundgren & Mansour 1988). For
the flow duration ∆t∗ = ∆t(R/g)1/2 (∆t is dimensionless) the thickness of the liquid
layer affected by the viscous effects may be estimated as δ∗ ∼ (ν∆t∗)1/2, ν being the
kinematic viscosity of the liquid. For free-jet-like structures such as those shown in
figure 3, the viscous effects could affect the flow if the thickness ∆∗ of such a jet
is smaller than δ∗. Thus, for such structures, viscous effects could not be neglected
if η = ∆∗g1/4/(ν1/2R1/4∆t1/2) < 1. For the jet-like structure of figure 3, we have
∆∗ ∼ 10−2R and ∆t ∼ 10−3. Thus, for R = 1 mm, ν = 1mm2 s−1 and g ≈ 10 m s−2 we
obtain η ∼ 101/2 which shows that, in the present case, viscous effects cannot modify
significantly even the flow in the tiny jetting region.

Viscous effects related to propagation of the shear wave from the free surface of
the drop above the necking region are even less important, since there ∆∗ ∼ R, and
thus η ∼ 105/2.

To estimate the effect of the shear wave propagating from the wall, we must take
∆∗ ∼ h. In the case of figure 3, we have h = 10−2R and thus η ∼ 101/2. Therefore, we
conclude that the shear-related viscous effects near the wall can also be neglected.

Other cases considered below in the present subsection are even less restrictive than
that of figure 3, so that the inviscid flow approximation is justified for all of them.

For a lower surface tension, the jet is thinner and faster (see figure 4, where the
dimensionless surface tension is one-tenth of that of figure 3 with the other parameters
fixed). It is still thicker, however, than without surface tension, cf. figure 5. Note that
the leading part of the jet can under some circumstances (see e.g. figure 4) pinch off
a part of its volume before it reconnects with the pre-existing film.

The jet formed at the neck can either reconnect with the film (see figure 3), or pinch
off a part of its volume at the tip (see figure 4). In the former case, a torus-shaped



238 D. A. Weiss and A. L. Yarin

0.04

–0.01

z–
H

0.03

0.02

0.01

0

0.24 0.26 0.280.20
x

0.22

Figure 4. Evolution of the free surface in the case of W = 10, S = 0.1, and H = 0.25. Thus,
We = 2000. The different curves correspond from left to right to times 0, 1 × 10−4, 2 × 10−4,
3 × 10−4, 4 × 10−4, and 4.1 × 10−4. The leading part of the jet can, under certain circumstances,
pinch off a part of its bulk before it reconnects with the pre-existing film.
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Figure 5. Evolution of the free surface in the case of W = 10, S = 0, and H = 0.25. Thus, We = ∞.
The different curves correspond from left to right to the times 0, 1× 10−4, 2× 10−4, 3× 10−4, and
3.5× 10−4. The jetting cannot be attributed to capillary effects, which are totally excluded here.

bubble is entrained, whereas in the latter, a liquid torus is detached from the jet.
Note that this mechanism leads to bubble entrainment even on shallow films. Both
liquid torus and bubble will, in reality, decay according to Rayleigh’s instability,
thus spontaneously breaking the cylindrical symmetry assumed in the treatment here.
This decay is associated with timescales comparable to the ones involved here, as
can be seen in advance by dimensional analysis. Indeed, the most unstable mode
of a cylindrical bubble grows as exp(γ1t), where the dimensionless growth rate γ1

is, in our units, proportional to (Sa−3
1 )1/2, a1 being the cross-section radius of the

entrapped torus-shaped bubble. The numerical value for the proportionality factor is
given, for example, by Chandrasekhar (1961), providing γ1 ≈ 0.8201(Sa−3

1 )1/2. With
the typical value of S = 1, this leads to a timescale for this break-up of the order of

γ−1
1 ≈ 1.22a

3/2
1 , which, in the example of figure 3, where a1 ≈ 0.001, is about 3.9×10−5.

This is comparable to, or shorter than the timescale of the jetting process in figure 3,
which is of the order of 10−4 to 10−3.
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Consider also the case where pinch-off of the jet tip takes place, resulting in a
liquid torus. The most unstable mode of a cylindrical liquid thread grows as exp (γ2t),
where the dimensionless growth rate is γ2 ≈ 0.3433(Sa−3

2 )1/2 (Chandrasekhar 1961),
a2 being the cross-section radius of the thread. Taking, for example, figure 4, we
estimate a2 ≈ 0.002. With S = 1, the characteristic timescale of the break-up becomes
γ−1

2 ≈ 2.6× 10−4, which is of the order of 2.45 × 10−4, i.e. the duration of the whole
jetting process depicted in figure 4.

Therefore, for the results for the moments following the bubble entrainment or the
pinch-off of the jet tip to become fully comparable with experiments – numerical
simulations should be performed in three dimensions. At present, this is beyond the
capacity of a work station, a personal computer and even a supercomputer, but in
any case the three-dimensional structures (tiny bubbles and droplets resulting from
break-up of the torus-like bubble and liquid torus, respectively) form at very early
stages of the flow development. Indeed, their dimensionless timescale is 10−5 to 10−4,
which is very short compared to the overall development time, which is of the order
of 10−1 to 1, as found below. These tiny bubbles and droplets are also very small
in the scale of the flow itself. Indeed, in figure 3, the bubble volume is of the order
of 2π × 0.23 × π × 0.0012 ≈ 5 × 10−6, whereas the initial drop has a volume of
4
3
π ≈ 4.189. Such a bubble would quickly (see above for the timescale) decay into

secondary bubbles with volumes of the order of π× 0.0012 × (2π× 0.001/0.484) (see
again Chandrasekhar 1961), which yields an equivalent radius of about 2×10−3 of the
initial drop. Assuming R to be of the order of 1 mm, this yields us a secondary-bubble
radius of the order of 2 µm, and even if these bubbles do not dissipate in the liquid,
they may be difficult to observe. Micron-size bubbles are not readily amenable to
detection in experiments at present, especially given the extremely short times of the
order of 10−5 s involved. However, an experimental indication that such bubbles may,
indeed, appear is elucidated by the photographs published by Chandra & Avedisian
(1991). They were taken when drops impinged on a hot surface. In figure 6 in Chandra
& Avedisian (1991), ten to fifteen bubbles are visible in a ring surrounding the centre
of the drop impact. These bubbles were detected at temperatures below (and above)
the boiling point and attributed to cavitation or nucleation at the nucleation sites on
the heated wall. If that were the case, however, the bubbles should be distributed more
or less uniformly and definitely not only in a ring-like region. On the other hand,
according to the bubble encapsulation mechanism elucidated in the present work, a
bubble ring should appear. We think that it became visible in the experiments of
Chandra & Avedisian (1991) since liquid evaporation into the bubbles at elevated
temperatures stabilized and enlarged them.

Estimate also the size of the droplets emerging from a liquid torus in the case
of pinch-off of the jet tip, as depicted, for example, in figure 4. The ring breaks up
rapidly (again see above for the timescale) into secondary droplets with volume of
the order of π× 0.0022 × (2π× 0.002/0.697) (see Chandrasekhar 1961), which yields
an equivalent radius of about 3.8× 10−3 of the initial drop. Thus, for R = 1 mm, the
secondary droplets would have a radius of about 4 µm.

As a result, one can expect that these tiny bubbles and droplets will be rapidly
smoothed, or at least will not affect substantially the overall flow development at the
later stages.

Formation of the jet as illustrated in figure 3 cannot be attributed to surface tension
effects. Indeed, the calculation for zero surface tension (S = 0) indicates jetting as
well (see figure 5). Nor does it depend on the thickness of the pre-existing film, as
is shown by figure 6. It is only very slightly affected by variation of the parameter
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Figure 6. Evolution of the free surface in the case of (a) W = 10, S = 1, and H = 0.01, (b) W = 10,
S = 1, and H = 2.25. Thus, We = 200. In (a), the curves correspond from left to right to times
0, 1×10−4, 2×10−4, 3×10−4, 4×10−4, and 4.2×10−4. In (b), the curves correspond from left to right
to times 0, 1× 10−4, 2× 10−4, 3× 10−4, 4× 10−4, and 4.7× 10−4. Formation of the jet is independent
of the thickness of the pre-existing liquid film. The jetting sets in and evolves practically on the
same timescale and takes very similar spatial shapes.

β responsible for the initial contact area (see § 2). In figure 6(a), jetting at W = 10,
S = 1 and H = 0.01 was predicted with β = 0.99, and bubble encapsulation occurs at
about t = 4.2× 10−4. A similar scenario was also concluded for β = 0.95, 0.995 and
0.998 with encapsulation times of about 5× 10−4. Thus, we can state that, at different
values of β, only some minor details change but the phenomena are similar.

On the other hand, jetting depends crucially on the impact velocity; in fact, it does
not set in when the latter is low enough (see figure 7); for the ethanol drop mentioned
above, this corresponds to w0 = 0.13 m s−1. Instead, the whole neck region moves
outwards under the action of surface tension, and capillary waves begin to propagate
outwards as well. The surface tension always tends to damp the jetting. Accordingly,
dominance of the surface-tension effects over the inertial ones, as in figure 7, precludes
formation of fine structures such as jetting, since the latter leads to increase of the
surface energy. At intermediate values of the surface tension, an intermediate scenario
between motion of the whole neck region and formation of a jet occurs; jetting
proceeds against the background of developing motion of the whole neck.
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Figure 7. Evolution of the free surface in the case of W = 1, S = 1, and H = 0.25. Thus, We = 2.
The different curves correspond from left to right to times 0, 5×10−4, 10×10−4, 15×10−4, 20×10−4,
25× 10−4, and 30× 10−4. The jet does not arise since the impact speed is low enough. Instead, the
whole neck region moves outwards under the action of the surface tension.
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Figure 8. The effect of surface tension. The plot shows the free surface shape for W = 10, H = 0.25,
and for several values of the dimensionless surface tension S at time t = 0.0003 after impact. The
first curve on the left represents the initial shape. The remaining curves correspond from right to left
to the dimensionless surface tensions S = 100, 20, 5, 1, and 0.2, in turn corresponding to We = 2,
10, 40, 200, and 1000, respectively.

We summarize the influence of the surface tension on jet formation in figure 8. It is
obvious that jetting occurs at the limit of relatively weak surface tension (relative to
the inertial effects), whereas sufficiently strong surface tension is able to suppress it.
The reason for the latter is that negative pressure may arise in the neck region owing
to very large curvature in the axial cross-section (p ∼ −α|∂2x/∂s2|). This negative
pressure actually corresponds to outward stretching of the liquid in the whole neck
by surface tension forces. This effect overcomes the jetting in the middle part and leads
to the scenario shown, for example, in figure 7. Note that these negative pressures are
in practice still small compared to the atmospheric pressure, so that cavitation does
not occur in practice in the bulk of the liquid.

The motion of the neck outwards without jetting, and the accompanying capillary
waves at the very first moment of a weak impact, look very similar to those found by
Og̃uz & Prosperetti (1989). Note, however, that the opposite volumes of liquid never
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LabelW S H We Phenomenon ujet or uneck Vα = [2α/(ρδ)]1/2/(Rg)1/2

1 20 1 0.25 800 Jetting 100 12
2 10 1 0.01 200 Jetting 66 12
3 10 0 0.25 ∞ Jetting 66 0
4 10 2 12.25 100 Jetting 58 17
5 10 100 0.25 2 Whole neck moving outwards 120 122
6 1 1 0.25 2 Whole neck moving outwards 12 12

Table 1. Comparison of the impact speed W , and the jet tip velocity ujet or the neck velocity uneck ,

respectively, with the velocity Vα = (2α/ρδ)1/2/(Rg)1/2. The velocity ujet or uneck is taken at time
t = 2× 10−4 in cases 1–5 and at t = 2× 10−3 in case 6. We note that the respective velocities of the
jet tip and neck are significantly higher than the impact speed.

touched each other in our simulations of a weak impact, as was the case in the former
work. We attribute this difference to the geometry of the situation, i.e. the effect of
the sphere.

To analyse the initial flow development in the neck region, we consider the hori-
zontal velocity of the jet tip or the whole neck moving outwards. For that of the
jet tip we take the value of Dx/Dt at a site where ∂x/∂s = 0 and ∂2x/∂s2 < 0.
There are actually two such sites: one in the neck region, the other near the drop
equator. Obviously, we consider the one in the neck region. For the velocity of the
neck, we take Dx/Dt at the site where Dz/Dt = 0. (Dz/Dt ≈ 0 also throughout
the whole liquid film far from the neck.) These velocities are plotted for some cases
in figure 9 as functions of time, with which they evidently vary. In particular, it is
observed that they are in all cases significantly higher than the impact speed, cf.
table 1, where the velocities ujet and uneck corresponding to t = 2 × 10−4 (cases 1 to
5) and t = 2× 10−3 (case 6) are presented. In table 1 we also give the dimensionless
speed Vα = [2α/(ρδ)]1/2/(Rg)1/2 (cf. our velocity unit introduced in § 2), which from
dimensional analysis should provide a meaningful velocity scale in this context. The
lengthscale δ involved in Vα is of the order of the gap width near the neck. Thus,
for δ/R we have put the neck width as 2r′, r′ again being the radius of the tiny
circular arc serving as an initial neck region under the impinging drop, rendered
dimensionless by R. From table 1, we conclude that a jet driven by inertial effects can
arise at the neck if it is sufficiently fast to outrun the outward motion of the whole
neck with a velocity of the order of Vα, or in other words, if surface tension is too
weak to accelerate the fluid parts situated at the neck. So, it is evident that the jetting
corresponds to inertial effects dominant over those due to surface tension.

In the first line of table 1, the jetting velocity is 5 times that of the impact. Taking
w0 = 1 m s−1 we thus estimate the jetting velocity as 5 m s−1.

Based on the findings in table 1 about the relation between W and ujet, we
conclude that the jet tip velocity ujet (if jetting actually occurs) scales roughly with
the speed of impact W , i.e. ujet = K(t)W , where K is a function of time with values
of the order of several units (according to figure 9 and table 1). We obtain then,
for the ratio between the jet tip velocity and the speed Vα, the expression ujet/Vα =

KW (Rg)1/2/(α/[ρRr′])1/2 = K(We/2 r′)1/2 = K( 1
2
We)1/2r′1/2 = KWe

1/2
neck . Therefore,

the ratio ujet/Vα yields up to a factor the square root of Weneck = ρr′Rw2
0/α, a Weber

number based on the neck width rather than on the drop radius. Thus, the condition
ujet/Vα � 1 is equivalent to K(Weneck)

1/2 � 1, which yields Weneck = ( 1
2
We)r′ � 1/K2

for jetting. The latter essentially means Weneck & 1 for jetting.
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Figure 9. The velocity of the jet tip ujet (in the case of jetting) and that of the neck centre uneck (in
the case where the whole neck moves outwards accompanied by capillary waves) as functions of
time. The numerals 1 to 5 labelling the different cases in (a) are the same as in table 1; (b) shows
the data for case 6 of table 1. Note that in all the cases the velocities reach values significantly
higher than the impact speed W . Note the different timescales for (a) and (b).

From our numerical results, we also observed that the critical value We(jetting)
c of We

corresponding to the onset of jetting varies essentially as 1/r′. In figure 8, We(jetting)
c ≈

40, and since r′ = 1/150 there, we obtain approximately We(jetting)
c ≈ 4/(15r′). As

shown below, the value of r′ = 1/150 is given by physical arguments.
Thus, our findings can be summarized by the statement that jetting occurs if

We�We(jetting)
c ≈ 40, and that capillary waves occur instead if We�We(jetting)

c . This
is indeed the case , as the values of We in table 1 show.

The question remains finally what happens if r′ is varied, in particular shifted
towards zero. At first glance, one would expect that We(jetting)

c grows to infinity, i.e.
that jetting does not occur, if only r′ is taken sufficiently small. Note, however, that,
in physical situations, r′ cannot decrease below any limit, and in practice there is a
lower bound for it. Indeed, first of all at the very short initial compressible stage
(see § 2) a finite contact zone appears at the bottom of the drop, of the order of
rc = Rw0/c0 ∼ 1 µm. This zone includes an area where the drop surface merges with
the liquid layer on the wall. The radius of curvature of the merging zone is very
small, and a plausible approximation is to assume that it is zero (see e.g. Keller &
Miksis 1983). Smoothing of the acute corner by surface tension proceeds with the
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velocity v ≈ (α/[ρt])1/3 (due to the dimensions of the parameters involved). At t = 0,
v = ∞. This is, however, an integrable singularity, and does not lead to instantaneous
smoothing of a zone of the order of r0. Indeed

r0 =

∫ t0

0

vdt = 3
2
(αt20/ρ)1/3.

Thus r′ ∼ r0/R = 3
2
(αt20/[ρR

3])1/3 = 3
2
(St′20 )1/3, where t′0 = t0/(R/g)1/2. The onset of

jetting corresponds to t′0 ≈ 10−4 to 10−3 for S = 1 according to the results of figure 3.
Thus, at the beginning of the jetting process r′ ∼ 3

2
× 10−8/3 to 3

2
× 10−2, but not

less than that. In our calculation, it was accordingly r′ = 1
150

. So we can say that
compressibility effects and then surface tension first form a (circular) arc over the
neck and only then does jetting (and our simulation) begin.

Note also that the effect of the dispersion (London) interaction of the liquid
molecules and the wall (Zimon 1982) is less important in the given case than that of
the surface tension considered above. Indeed, for the smoothing due to the dispersion
interaction v ≈ (A/[ρt3])1/5, where A is the Hamaker–van der Waals constant. Thus
r′ ∼ 5

2
[(A/[ρR4g])t′20 ]1/5. Given A ≈ 10−20 J, ρ = 1000 kg m−3 and R ≈ 1 mm, we obtain

r′ ∼ 5
2
× 10−4 to 5

2
× 10−18/5 for t′0 ≈ 10−4 to 10−3. Comparing with the values of r′

resulting from the effect of surface tension, we conclude that the latter is dominating.

Pumphrey & Elmore (1990) described several scenarios of bubble entrainment in
deep liquids. Some of them were explained theoretically. Another scenario, the ‘Mesler
entrainment’, experimentally observed in Esmailizadeh & Mesler (1986), was discussed
in Og̃uz & Prosperetti (1989) and found to be compatible with their numerical results.
One of the features arising in the Mesler entrainment fits also, to a large extent, with
what we would expect as an experimental manifestation of our simulations. Indeed,
this kind of entrainment traps a very large number of tiny bubbles formed near the
neck, if the drop impacts on a deep liquid layer. Mesler entrainment was observed
only at moderate-impact Weber numbers, however, and is replaced or masked by
other mechanisms at higher Weber numbers in the case of deep liquids. From figure 5
in Pumphrey & Elmore (1990), obtained for water, we can see that the parameters
leading to Mesler entrainment with the largest Weber number are d ≈ 1 mm for
the drop diameter and v ≈ 3 m s−1 for the impact velocity, i.e. R ≈ 0.5 mm and
w0 ≈ 3 m s−1 in our notations. For water, this corresponds to We ≈ 125 or S ≈ 29
and W ≈ 43. On the other hand, our simulations for a relatively thick pre-existing
liquid film predict an intermediate behaviour in the case of We = 100; the jet begins to
develop against the background of motion of the whole neck. They show entrainment
of tiny bubbles at higher impact Weber numbers (We & 200), and the higher the
better, which does not correspond to Mesler entrainment. It is not clear whether
Mesler’s scenario can also be observed on shallow liquid films, as is predicted by our
simulations; so far, it has been observed on deep pools only. For low-Weber-number
impact, our simulations do not predict bubble entrainment. As an example, we take
a water drop with d ≈ 1 mm and v ≈ 0.85 m s−1 i.e. R ≈ 0.5 mm and w0 ≈ 0.85 m s−1,
thus We = 10, S ≈ 29 and W ≈ 12. According to Pumphrey & Elmore’s figure 5,
this should lead to Mesler entrainment (on deep liquids), whereas our simulations
predict the neck moving outwards as a whole without any bubbles formed, see the
curve with S = 20 in our figure 8. Therefore, we think that these numerical results
manifest a mechanism of bubble entrainment different from that of Mesler. Our
mechanism actually replaces Pumphrey & Elmore’s regular and irregular mechanisms
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for relatively high-speed impacts, which cannot proceed in the shallow-liquid case;
instead of them, we find formation of tiny bubbles trapped by the jetting.

Note finally that Og̃uz & Prosperetti (1989, 1990) did not observe any jetting at
the neck, as we did in the case of a strong impact. In the first work, a liquid neck
between two infinite liquid masses was considered. At zero collision velocity, they
found evolution of the free surface rather similar to that of our figure 7, which is
characteristic of weak impacts. On the other hand, direct comparison of our results
with the former with non-zero collision velocity is impossible, since they considered
infinite liquid masses, and thus no droplet radius can be defined, which rules out
confrontation of our dimensionless governing parameters W and S with theirs. Only
the criterion using the neck-based Weber number can be used. Our Weneck corresponds
to their U2∗ . In their cases, U2∗ 6 1. As shown above, Weneck & 1 for jetting. Thus, the
criterion for jetting we described above is not fulfilled in Og̃uz & Prosperetti (1989).
In the second work, two cases of drop impact on a liquid surface were computed;
they correspond to (i) W = 11.2 and S = 2.035, which yields We = 123, and (ii)
W = 14.2 and S = 0.87, which yields We = 466. In both cases, H = ∞. It is not
clear whether this work provided sufficiently fine resolution of the neck region to be
able to observe jetting. If so, the fact that the liquid layer was actually infinitely deep,
allowing for development of vertical flow, may be responsible for the absence of jetting
in their calculations. Furthermore, they included an artificial curvature damping in
their numerical code, which might suppress such small-scale details as jetting.

3.2. Results for large times after impact

In this subsection, we do not consider the part of the neck in minute detail. We
therefore place very few nodes on the small circular arc corresponding to the neck
at the initial moment, typically only one or two. As a result, the initial jetting and
subsequent reconnection are smoothed out. We have seen in § 3.1 that the entrapped
torus-shaped bubble disintegrates quickly into tiny bubbles. We postulate that neither
these bubbles nor the shear layers resulting from the reconnection affect substantially
the overall behaviour of the impinging and spreading drop and crown formation, and
therefore we smooth them out here.

As a first example, we take the case of a thin pre-existing liquid film. Initially, one
would tend to assume that this case is close to that of impact onto a dry wall. This
approach, however, does not allow for the effects of wall roughness and wettability,
which may prove crucial in practical situations. Thus, we assume implicitly that the
wall is ideally smooth and always covered by the film.

In figure 10, we show the free surface of the liquid volume for several moments after
drop impact. The shapes shown in figure 10 should be considered as a continuation
of the scenario illustrated in figure 6(a) at timescales 103 times that of the latter.
One observes the formation of a crown, which propagates outwards away from the
axis of impact along the solid wall. This phenomenon has frequently been observed
experimentally, beginning with Worthington (1876, 1877), and identified as the effect of
a kinematic discontinuity in the spreading lamella (Yarin & Weiss 1995). Furthermore,
it has been found that the effect is suppressed by sufficiently strong surface tension.
To check this, we consider the same problem with increased dimensionless surface
tension, S = 10. The result is shown in figure 11. The difference in behaviour is
evident: practically no crown is formed, and the drop gradually spreads over the wall.
This pattern is similar to those found numerically for droplet spreading by Fukai et
al. (1993, 1995), Hatta et al. (1995) and Pasandideh-Fard et al. (1996). By contrast,
the pattern of figure 10 is totally different: to the best of our knowledge, it represents
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Figure 10. Crown formation. Evolution of the free surface in the case W = 10, S = 1, and H = 0.01.
Thus, We = 200. The different curves correspond to times 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. The
formation of a crown can be observed. The crown propagates outwards away from the axis of
impact along the solid wall. In this, and the following calculations, the initial neck region is not
resolved in fine detail. As a result, the initial jetting and reconnection are smoothed out.
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Figure 11. Drop spreading. Evolution of the free surface in the case W = 10, S = 10, and H = 0.01.
Thus, We = 20. The different curves correspond to times 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. There is
practically no crown formed, since the inertial effects are relatively weak compared to the capillary
ones. As a result, the drop gradually spreads over the wall.

the first BEM-based two-dimensional numerical simulation of crown formation and
propagation.

The characteristic time of the drop-splashing process shown in figure 10 is ∆t ∼
10−1. Estimating first the viscous effects from the free surface of the drop, we take
∆∗ ∼ R and obtain η ∼ 103/2 (ν and R being the same as in § 3.1). Thus, the viscous
effects associated with the shear near the free surface can be neglected.

For the viscous effects associated with the shear from the wall we take ∆∗ ∼ h =
10−2×R and thus η ∼ 10−1/2. In this case the viscous forces can damp the liquid film
on the wall during propagation of the crown, as discussed by Yarin & Weiss (1995).
However, since the crown mass is much larger than that of the affected near-wall
bottom zone, the overall effect of the damping on the predominantly inertial crown
propagation will still be insignificant at times of the order of several ∆t. The latter
enables us to believe that the potential flow of figure 10 represents accurately the
pattern of the real viscous flow.

Other cases considered in the present section are even less restrictive with regard
to the viscous effects.

In the experiments of Shin & McMahon (1990) with drop impact on liquid layers,
formation of the Worthington jets rising from the middle of the crater was found for
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Figure 12. Evolution of the free surface in the case W = 10, S = 1, H = 0.25. Thus, We = 200. (a)
The different curves correspond to times 0, 0.1, 0.2, 0.3, 0.4, and 0.5. At the beginning, the crown
is tilted backwards towards the drop. It straightens and tilts forward later at about t = 0.2. (b)
The different curves correspond to times 0, 1, 2, 3, 4, 5 and 6. The crown is preceded by capillary
waves. The film thickness behind the crown is smaller than that of the unperturbed film. Note the
contracted x-axis in (b), which makes a spherical drop take a cigar-like shape in the plot.

depths of the order of the crater radius. On the other hand, the results of figure 10
do not show any sign of Worthington jetting. The reason for the latter is as follows.
The crater radius in the target liquid (if a crater appears) is at least larger than that
of the incident drop. The depth in the case of figure 10 is H = h/R = 0.01. When
the depth of the liquid layer was smaller than the crater radius, Shin & McMahon
(1990) did not find any Worthington jetting, just as we do not find it in the present
work dealing only with very shallow liquid layers. In another case considered below
in the present subsection (figure 12), H = h/R = 0.25, and Worthington jetting does
not appear either.

Let us now consider the influence of the film thickness. For that purpose, we take
first a case with H = 0.25. The results are shown in figure 12. We observe that a
crown forms largely as in the case H = 0.01. As before, it deviates slightly from the
normal to the wall and propagates outwards from the z-axis. At the beginning it is
tilted backwards at its top, subsequently it becomes almost straight and finally tilts
forward. Furthermore, it is evident that the film thickness behind the crown is smaller
than the original one (see figure 12(b) where the x-axis is contracted, thus making a
spherical drop look cigar-like), which means that the liquid combined in the crown
stems partly from the film itself. This is also true for the case with H = 0.01, but of
course much less obvious. It is in agreement with the prediction based on our model
developed and published earlier (Yarin & Weiss 1995). The detailed behaviour of the
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film thickness behind the crown as a function of time is not very conclusive, however,
since the thickness is very small at large times, and even small numerical inaccuracies
acquire weight.

For very thin initial films, for example, such as that corresponding to figure 10 (H =
0.01), the crown mainly consists of the liquid from the drop for t = O(1). Therefore, at
0.2 6 t 6 0.6, when a fully developed crown already exists and propagates outwards,
its volume may be expected to be approximately constant. Numerically, the crown
volume does not change more than by a few percent over this interval. Thus, the
product of an effective crown thickness ∆x times its height ∆z should be proportional
to x−1,∆x∆z ∼ x−1. The numerical results in figure 10 show that ∆z is approximately
constant at 0.2 6 t 6 0.6. The effective thickness of the crown ∆x slightly decreases
as x−1 from x ≈ 2.5 to 3.5. At later times, an increase in the crown volume is more
pronounced owing to accumulation of the liquid scraped from the film in front of the
crown and sucked from the film behind it.

In figure 12(b), we plot the behaviour for relatively large times after the impact.
It can be observed that the crown is preceded by capillary waves on the film. We
have already observed this feature in our quasi-one-dimensional simulations (Yarin
& Weiss 1995), and it can also be observed in experiments (Edgerton and Killian, as
reproduced in Peregrine, Shoker & Symon 1990).

Also, for a still thicker film with H = 1, the results of our simulations show that
the crown in the beginning consists mainly of the liquid of the drop, and only later
also scrapes a significant mass from the pre-existing liquid film. Note also that, in
the case of that film, the inner side of the crown becomes steeper and steeper, until
∂x/∂s becomes negative. This may eventually lead to entrainment of a bubble inside
the crater, as described by Og̃uz & Prosperetti (1990).

At smaller impact velocities (e.g. W = 2 and 5 instead of W = 10 of figures 10 and
12) the crown practically disappears.

Let us now compare the results for large times after impact with our previous
quasi-one-dimensional model (Yarin & Weiss 1995), hereinafter referred to as the
YWM.

The YWM is relevant for the impact of drops impinging one by one on a solid
wall. In this case, a liquid film of thickness h0 ≈ (ν/f)1/2 is damped on the wall
by the viscous forces (ν is the kinematic viscosity, and f the frequency of the drop
train) and the oncoming drops impinge on this film. The YWM made use of the
dimensionless parameter ε = αh0f

2/(ρw4
0) (i.e. the ratio of the surface tension forces

to the inertial ones). According to the YWM, a crown emerges only for small ε when
the impact velocity is high enough and inertial forces dominate. Otherwise, capillary
waves propagate from the point of impact.

A similar pattern is found in the present numerical simulations for a single drop
impact. The results of the present work show emergence of a crown propagating over
the film along the solid wall, if the impact velocity is high enough. If surface tension
is strong enough, we do not observe any crown but only the spreading of a drop
accompanied by capillary waves.

A more detailed and quantitative comparison of crown formation and the splashing
threshold in the two cases of drop impact (i.e. a drop train onto an initially dry wall
– which is covered afterwards by a liquid film stemming from the preceding drops
– on one side, versus a single drop on a liquid film on the wall on the other side)
is delicate. In the first case, the frequency f is given, whereas the thickness of the
liquid film damped by viscous forces on the wall depends on it as h0 ≈ (ν/f)1/2. In
the second case, the thickness h (as it is denoted in the present work) of the film
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Figure 13. The kinematics of the crown spreading over the liquid film along a solid wall. The
parameters are those of figure 12. ——, crown radius as a function of time; −−−, best fit to it of
the form xc = [C (t− t0)]1/2, where C = 24.7 and C t0 = 0.5, i.e. t0 = 0.020.

on the wall is given. Thus, the situations are different and their comparison is not
straightforward. Yarin & Weiss (1995), however, showed that if h0 is replaced by
(ν/f)1/2 and the frequency f formally replaced by w0/(2R), the results of the YWM
coincide with those of Stow & Hadfield (1981) found experimentally for a threshold
of crown formation and splashing for single-drop impact. They also showed that
similar substitution permits prediction of the rate of crown propagation in the case
of a single-drop impact on a liquid layer studied experimentally by Levin & Hobbs
(1971). Cossali et al. (1997) in their experimental study of a single-drop impact on a
thin liquid film also confirmed the above substitution and showed that the predictions
of the YWM, with the characteristic frequency of w0/(2R), correctly describe their
data.

Expressed in terms of the dimensionless groups used here, ε ≈ 1
4
SHW−2 =

H/(2We). For the data of figure 10, the value of the parameter U = ε−1/4, also
used in the YWM, is U ≈ 14, which is close to that of U ≈ 18, corresponding to
formation of secondary droplets at the crown top (splashing) according to Yarin &
Weiss (1995).

The critical value for crown formation We(crown)
c for H = 0.25 is of the order of

100, while that for jetting We(jetting)
c found for H = 0.25 in figure 8 is about 40. Thus,

the parameter ranges producing a transition regime with respect to formation of a jet
and a crown, respectively, are rather close to each other. As a result, a flow producing
jetting at the very beginning will then result in crown formation.

We consider now the asymptotic behaviour of the crown radius as a function of
time. We take the example shown in figure 12 and find the result plotted in figure 13.
The crown radius can be very accurately described by a square-root function of time:
xc = [C(t − t0)]1/2, where C = 24.7 and Ct0 = 0.5, i.e. t0 = 0.020. This square-root
dependence was predicted and verified experimentally in Yarin & Weiss (1995), and
is also supported by the experimental data of Cossali et al. (1997).

To compare the numerical results in more detail with the predictions of the YWM,
we consider the velocity distribution Dx/Dt at time t = 0.2 after impact (see figure 14).
At this moment, the drop has nearly merged with the film, its apex is at z −H ≈ 0.4.
The crown has formed (I in figure 12a), is situated at xc ≈ 2.4 and already tilted
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Figure 14. The velocity distribution Dx/Dt at t = 0.2 after impact. The parameters are those of
figure 12. The drop has nearly coalesced with the film. The crown has formed and is already tilted
forward. This leads to the discontinuity in Dx/Dt (x) at about xc = 2.4, where the crown is situated
at this instant. By integrating Dx/Dt over x, we numerically obtain 12.51 which is in very good
agreement with the value 12.35 predicted by the YWM based on the findings from figure 13.

forward. The crown manifests itself as a steep drop of velocity Dx/Dt at xc ≈ 2.4.
Note the very narrow loop in the velocity distribution in figure 14. It refers to sites A
and B of crown I and means that point A (corresponding roughly to the rim of the
crown) moves outwards slightly faster than B (corresponding roughly to the ‘root’ of
the crown). Indeed, crown II next shown in figure 12(a) is tilted forward more than
crown I.

According to the YWM, integration of the horizontal component of the surface
velocity Dx/Dt over x yields the value of 1

2
C . Figure 14 yields numerically 1

2
C ≈ 12.51,

thus C ≈ 25.02, which is in very good agreement with the value of C ≈ 24.7 found
above. Thus, the kinematic predictions of the YWM are fully supported by the present
numerical results.

We now compare our results with experimental findings and other numerical
results from literature. As mentioned before, the crown has been widely observed and
reported on, for example, in the experimental studies of Worthington (1876, 1877),
Levin & Hobbs (1971), Stow & Hadfield (1981), Yarin & Weiss (1995), and Cossali et
al. (1997). This aspect of our numerical results is thus in agreement with other works.

Experiments of Levin & Hobbs (1971) and Yarin & Weiss (1995) demonstrated
also the formation of a free rim on the top of the crown owing to the action of surface
tension. As was explained in the latter work, cusps are formed on this rim, leading to
formation of secondary droplets on the top of the crown. The spatial resolution of the
present numerical simulations is not high enough to bring out the details of the rim,
although the crown shapes in figures 10 and 12 at t = 0.5 do hint at a free rim. The
present method, confined to axisymmetric shapes, is definitely incapable of describing
such three-dimensional phenomena as the cusp formation mentioned above.

Our numerical results show, in the case of film thickness H = 0.01 with crown
formation absent, that the front of the spreading lamella is nevertheless thickened
(see figure 11). This is due to the effect of surface tension, counteracting the spreading
which results in a rim. It is in agreement with experimental and numerical evidence
by Chandra & Avedisian (1991), Fukai et al. (1993, 1995), Hatta et al. (1995) and
Pasandideh-Fard et al. (1996).
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4. Summary and concluding remarks

We can summarize the findings in the present work as follows:
(i) In the case of a relatively strong impact of a single drop on a liquid layer at the

wall, at We � 40 (e.g. We & 200) jetting sets in in the middle of the neck between
the oncoming drop and the liquid layer.

(ii) The tip of the jet may reconnect with the free surface of the liquid film at the
wall, thereby trapping a torus-like bubble.

(iii) On the other hand, the tip of the jet may also pinch off before the reconnection,
thereby producing a liquid torus.

(iv) The torus-like bubble breaks up rapidly (typically at about t ≈ 3.9×10−5(R/g)1/2

after formation) into a number of tiny bubbles with equivalent radius of about 2×10−3

times the initial drop radius R (g being acceleration due to gravity).
(v) The liquid torus pinched off from the jet tip also breaks up rapidly, typically

at about 2.6 × 10−4(R/g)1/2 after formation, into a number of tiny droplets with
equivalent radius of about 3.8× 10−3R.

(vi) The phenomena described in (iv) and (v) lead to a developed three-dimensional
flow pattern, breaking spontaneously the initial axisymmetry of the flow. However,
all these tiny three-dimensional details emerging at about t (R/g)−1/2 = 10−4 to 10−3

are believed to be smoothed out at a timescale of the order of t (R/g)−1/2 = 10−1 to
1, characteristic of the flow development leading to crown formation.

(vii) The entrainment of tiny bubbles described in (ii) and (iv) differs from Mesler
entrainment known from literature, and seems to be a new mechanism characteristic
of strong impacts on thin liquid films at the wall.

(viii) Summarizing our results in terms of the Weber and Froude numbers, We
and F r, and of the dimensionless film thickness H , we can state, for 0.01 6 H < ∞,
and 2 6 F r < ∞, that: at 0 < We � 40 (e.g. already at We = 2 and 10) the whole
neck region moves outwards; at 40 � We < We(pinch-off )

c ≈ 1000 jetting leading to
encapsulation of tiny bubbles occurs; at We > We(pinch-off )

c ≈ 1000 jetting leading to
pinch-off of the jet tip and formation of tiny droplets occurs.

Note that our results suggest that extrapolation towards very large values of H
and Fr is possible. For the characteristic values of the parameters involved (e.g.
W = 10 and H 6 0.25) the Froude number Fr = WH−1/2 > 20, and the effect of its
variation (as well as that of gravity in general) becomes small. The results show that
the dominant effect is related to variation of the Weber number We = 2W 2 S−1 (or
that of the inverse Bond number S).

(ix) Recognizing that the extremely short times – of the order of 10−3(R/g)1/2 ∼
10−5s (for R ∼ 1 mm) – and the small dimensions – of the order of 10−2R ∼
10−5 m – of the predicted jetting or bubble entrapment, are not readily amenable
to experimental investigation, the present numerical study yields some insight into
the processes in the neck region under an impinging drop. There are other situations
where experimental conditions are so difficult, owing to the short times and small
scales involved, that they have not been met to date, and only numerical and analytical
results are available, for example, regarding the shape and evolution of the ‘air gap’
between two colliding drops (Foote 1975; Howison et al. 1991). As discussed in § 3.1,
the experimental data of Chandra & Avedisian (1991) might be considered to some
extent as an indirect confirmation of the tiny-bubble entrapment mechanism in a
ring-like region elucidated in the present work. Note that for these data We = 43
before impact, effectively increasing after impact owing to heating from the wall.

(x) At weak impacts (e.g. We . 10) jetting does not occur. Accompanied by
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capillary waves, the whole neck between the drop and the film at the wall is pulled
outwards by surface tension forces instead. This scenario does not lead to bubble
entrainment.

(xi) The velocities of the jet tip or the whole neck along the wall may be from 5
up to about 15 times that of the impinging drop; even so, no compressibility effects
are involved.

(xii) After a strong impact leading to jetting, at timescales of the order of
t (R/g)−1/2 = 10−1 to 1, a crown is formed in the liquid film at the wall. The crown
propagates outwards, at first tilted at its top towards the symmetry axis, subsequently
away from it.

(xiii) The main features of the crown found in the present two-dimensional sim-
ulations agree with the predictions of the quasi-one-dimensional model of Yarin &
Weiss (1995): The crown position varies as xc = [C(t− t0)]1/2; the crown is preceded
by capillary waves; the liquid film at the wall inside the crown is thinner than outside.
The crown contains the liquid brought by the drop and scrapes the film as well. There
are also signs that a free rim is formed on the top of the crown.

(xiv) The jetting described in (i), and the crown formation of (xii), represent kindred
phenomena due to formation of kinematic discontinuity in the velocity distribution
in the liquid, leading to outflow from its free surface.

(xv) On a deeper liquid layer, there are signs that the inner wall of the crown
may overturn, leading to bubble entrainment in the crater similar to that of Og̃uz &
Prosperetti (1990).

(xvi) After a weak impact, at t (R/g)−1/2 = 10−1 to 1, a drop spreads over the wall
without crown formation. The leading edge of the spreading spot swells under the
action of surface-tension forces.
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